If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x+4x^2=0
a = 4; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·4·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*4}=\frac{0}{8} =0 $
| -2=4x-7/5x+1 | | -10x-20=-44 | | 5(2x+3)-4(5x-2)=-2(5-x)-3(7x+6)+7x | | 144-2x=100 | | 20x+30=250 | | 2.5=0.25x=-3 | | -2x+13=13 | | 9x-46=36 | | 9x-46=46 | | 72-4x=128 | | 62m-627=-123 | | -18=-3c+6 | | (x+5)^5=35 | | 6(2×-10)+22=3x+16 | | -16c=8 | | -b^2+9b-36=0 | | 15x=125+5x | | 3x+3^0.5=0 | | 2/5k-1/7=1/3 | | 4.2+6.3n=9.8n | | 5-12-3j=10-2j | | -18v-10=-19v | | -19r+18=-11r+10 | | 6=9x=-42=x | | 444/12=x | | 10s+2=8s | | 2-8g=-9g+3 | | -4n-3+8n=3+3n | | 2+10c=-6+9c | | 7x-2+7=40 | | 5^8x=125 | | s×6-39=39 |